Contributions to http://xenharmonic.wikispaces.com/ are licensed under a Creative Commons Attribution Share-Alike Non-Commercial 3.0 License.

Portions not contributed by visitors are Copyright 2017 Tangient LLC

TES: The largest network of teachers in the world

Portions not contributed by visitors are Copyright 2017 Tangient LLC

TES: The largest network of teachers in the world

Loading...

11-limitconsists of all justly tuned intervals whose numerators and denominators are both products of the primes 2, 3, 5, 7 and 11. Some examples of 11-limit intervals are 14/11, 11/8, 27/22 and 99/98. The 11 odd-limit consists of intervals whose numerators and denominators, when all factors of two have been removed, are less than or equal to 11. Reduced to an octave, these are the ratios 1/1, 12/11, 11/10, 10/9, 9/8, 8/7, 7/6, 6/5, 11/9, 5/4, 14/11, 9/7, 4/3, 11/8, 7/5, 10/7, 16/11, 3/2, 14/9, 11/7, 8/5, 18/11, 5/3, 12/7, 7/4, 16/9, 9/5, 20/11, 11/6, 2/1. In an 11-limit system, all the ratios of the 11 odd-limit can be treated as potential consonances.While the 7-limit introduces subminor and supermajor intervals, which can sound like dramatic inflections of the familiar interval categories of 12edo, the 11-limit introduces neutral intervals, superfourths and subfifths, which fall in between major, minor and perfect interval categories and thus demand new distinctions. It is thus inescapably xenharmonic.

Relative to their size, edos which do (relatively) well in supporting 11-limit intervals are: 1edo, 2edo, 3edo, 4edo, 5edo, 6edo, 7edo, 9edo, 10edo, 12edo, 15edo, 22edo, 26edo, 31edo, 41edo, 63edo, 72edo, 87edo, 109edo, 161edo.

## Intervals

Some of the simplest intervals of 11 include:## Music

Study #3 play by Dave HillBrief 11-ratio composition play by Dave Hill

11 Limit Piano by Chris Vaisvil

11-limit singtervals by Andrew Heathwaite

## See also

Harmonic Limit