editing disabled

"Classic" pentatonic. Perhaps the most common scale in the world.

The meantone pentatonic scale, in which the generator approximates 4/3 but other intervals in the scale approximate 6/5 and 5/4, has by far the lowest harmonic entropy of all 5-note MOS scales, which explains the worldwide popularity of these scales and their very long history of use. It is also strictly proper.
Generator
Cents
s
L-s
|L-2s|
Scale steps
Trichord
Comments
2\5





480
240
0
240
1 1 1 1 1
1 1






11\27
488.89
222.22
44.44
177.78
6 5 5 6 5
6 5
Slendro (insofar as it resembles a MOS)
would be in this region




9\22

490.91
218.18
54.545
163.64
5 4 4 5 4
5 4






16\39
492.31
215.38
61.54
153.85
9 7 7 9 7
9 7
No-5's superpyth/dominant is around here



7\17


494.12
211.76
70.59
141.18
4 3 3 4 3
4 3






19\46
495.65
208.7
78.26
130.435
11 8 8 11 8
11 8





12\29

496.55
206.9
82.76
124.14
7 5 5 7 5
7 5






17\41
497.56
204.88
87.8
117.07
10 7 7 10 7
10 7
Pythagorean pentatonic is around here


5\12



500
200
100
100
3 2 2 3 2
3 2
Familiar 12-equal pentatonic
(also optimum rank range: L/s=3/2)






502.305
195.39
111.53
83.86
pi 2 pi 2 2
pi 2






18\43
502.33
195.35
111.63
83.72
11 7 7 11 7
11 7





13\31

503.23
193.55
116.13
77.42
8 5 5 8 5
8 5
Optimal meantone pentatonic
is around here






1200/(4-phi)
192.43
118.93
73.50
phi 1 1 phi 1
phi 1
Golden meantone





21\50
504
192
120
72
13 8 8 13 8
13 8




8\19


505.26
189.47
126.32
63.16
5 3 3 5 3
5 3






19\45
506.67
186.67
133.33
53.33
12 7 7 12 7
12 7







507.18
185.64
135.9
49.74
√3 1 √3 1 1
√3 1





11\26

507.69
184.615
138.46
46.15
7 4 4 7 4
7 4






14\33
509.09
181.82
145.455
36.36
9 5 5 9 5
9 5


3\7




514.29
171.43
171.43
0
2 1 1 2 1
2 1
(Boundary of propriety: smaller
generators than this are strictly proper)





13\30
520
160
200
40
9 4 4 9 4
9 4





10\23

521.74
156.52
208.7
52.17
7 3 3 7 3
7 3






17\39
523.08
153.84
215.385
61.54
12 5 5 12 5
12 5




7\16


525
150
225
75
5 2 2 5 2
5 2
5-note subset of pelog (insofar as it
resembles a MOS) would be in this region





18\41
526.83
146.34
234.15
87.8
13 5 5 13 5
13 5







600(25+√5)/31
145.7
235.75
90.05
phi+1 1 1 phi+1 1
phi+1 1





11\25

528
144
240
96
8 3 3 8 3
8 3







528.88
142.24
244.405
102.17
e 1 e 1 1
e 1
L/s = e





15\34
529.41
141.18
247.06
105.88
11 4 4 11 4
11 4



4\9



533.33
133.33
266.67
133.33
3 1 1 3 1
3 1
L/s = 3






535.36
129.26
276.835
147.57
pi 1 pi 1 1
pi 1
L/s = pi





13\29
537.93
124.14
289.655
165.52
10 3 3 10 3
10 3





9\20

540
120
240
180
7 2 2 7 2
7 2






14\31
541.935
116.13
309.68
193.55
11 3 3 11 3
11 3




5\11


545.45
109.09
327.27
218.18
4 1 1 4 1
4 1
L/s = 4





11\24
550
100
350
250
9 2 2 9 2
9 2





6\13

553.85
92.31
369.23
276.92
5 1 1 5 1
5 1






7\15
560
80
480
400
6 1 1 6 1
6 1

1\2





600
0
600
600
1 0 0 1 0
1 0
a degenerated pentatonic scale with only 2 different steps

From a 3-limit perspective, just make a chain of four 4/3's and octave-reduce, and you end up with pentatonic.

From a 5-limit perspective, the most interesting temperaments with this kind of pentatonic scale are meantone and mavila.

There is also the interesting 2.3.7 temperament that tempers out 64/63 ("no-fives dominant").