Contributions to http://xenharmonic.wikispaces.com/ are licensed under a Creative Commons Attribution Share-Alike Non-Commercial 3.0 License.

Portions not contributed by visitors are Copyright 2018 Tangient LLC

TES: The largest network of teachers in the world

Portions not contributed by visitors are Copyright 2018 Tangient LLC

TES: The largest network of teachers in the world

Loading...

## Basics

The48 equal divisiondivides the octave into 48 1/8th tones of precisely 25 cents each. Since 48 is a multiple of 12, it has attracted a small amount of interest. However, its best major third, of 375 cents, is over 11 cents flat. An alternative third is the familiar 400 cent major third. Using this third, 48 tunes to the same values as 12 in the 5-limit, but tempers out 2401/2400 in the 7-limit, making it a tuning for squares temperament. In the 11-limit we can add 99/98 and 121/120 to the list, and in the 13-limit, 66/65. While 31edo can also do 13-limit squares, 48 might be preferred for some purposes.## Temperaments

Using its best major third, 48 tempers out 20000/19683, but 34edo does a much better job for this temperament, known as tetracot. However in the 7-limit it can be used for doublewide temperament, the 1/2 octave period temperament with minor third generator tempering out 50/49 and 875/864, for which it is the optimal patent val. In the 11-limit, we may add 99/98, leading to 11-limit doublewide for which 48 again gives the optimal patent val. It is also the optimal patent val for the rank three temperament jubilee, which tempers out 50/49 and 99/98.If 48 is treated as a no-fives system, it still tempers out 99/98 and 243/242 in the 11-limit, leading to a no-fives version of squares for which it does well as a tuning. In the 13 no-fives limit, we can add 144/143 to the list of commas, and we get the no-fives version of 13-limit squares, for which 48 actually defines the optimal patent val. No-fives squares should probably be considered by anyone interested in 48edo; the generator is 17\48, a 425 cent interval serving as both 9/7 and 14/11.

Something close to 48edo is what you get if you cross 16edo with pure fifths, for instance, on a 16-tone guitar. The presence of 12/11 in 16edo allows a string offset of 11/8 to also work for producing perfect fifths.

## Compositions

Quincunx by Jon Lyle SmithTwo At Once play by Carlo Serafini

Tim's Flutes play by Carlo Serafini