editing disabled

4L 3s refers to the structure of moment of symmetry scales with generators ranging from 1\4edo (one degree of 4edo, 300¢) to 2\7edo (two degrees of 7edo, or approx. 342.857¢). The spectrum looks like this:
Generator
Tetrachord
g in cents
2g
3g
4g
Comments
1\4






1 0 1
300.000
600.000
900.000
0.000







8\31
7 1 7
309.677
619.355
929.023
38.71
Myna is around here





7\27

6 1 6
311.111
622.222
933.333
44.444





6\23


5 1 5
313.043
626.087
939.13
52.174




5\19



4 1 4
315.789
631.579
947.368
63.158
L/s = 4




9\34


7 2 7
317.647
634.294
951.941
70.588
Hanson/Keemun is around here







pi 1 pi
319.272
638.545
957.817
77.089
L/s = pi


4\15




3 1 3
320.000
640.000
960.000
80.000
L/s = 3







e 1 e
321.6245
641.249
964.874
86.498
L/s = e




11\41


8 3 8
321.951
643.902
965.854
87.805







29\108
21 8 21
322.222
644.444
966.667
88.889






18\67

13 5 13
322.388
644.776
967.364
89.522




7\26



5 2 5
323.077
646.154
969.231
92.308
Orgone is around here

3\11





2 1 2
327.273
654.545
981.818
109.091
Boundary of propriety (generators
larger than this are proper)







√3 1 √3
330.217
660.434
990.651
120.868




8\29



5 3 5
331.034
662.069
993.013
124.138






21\76

13 8 13
331.579
663.158
994.739
126.316







34\123
21 13 21
331.707
663.415
995.122
126.829
Unnamed golden temperament




13\47


8 5 8
331.915
663.83
995.745
127.66








pi 2 pi
332.3165
664.633
996.9495
129.266



5\18




3 2 3
333.333
666.667
1000.000
133.333
Optimum rank range (L/s=3/2)



7\25



4 3 4
336.000
672.000
1008.000
144.000





9\32


5 4 5
337.5
675
1012.5
150
Sixix





11\39

6 5 6
338.462
676.923
1015.385
153.846
Sixix






13\46
7 6 7
339.130
678.261
1017.391
156.522
(17/14)^3=9/5
2\7






1 1 1
342.857
685.714
1028.571
171.429

There are two notable harmonic entropy minima: hanson/keemun, in which the generator is 6/5 and 6 of them make a 3/1, and myna, in which the generator is also 6/5 but now 10 of them make a 6/1 (so no 4/3's or 3/2's appear in this scale).