editing disabled

The basic structure of major and minor triads -- two stacked thirds which total to a perfect fifth -- can be generalized to produce an infinity of chords with their own distinct qualities. What follows is a list of all such chords that are possible in 47-prime-limit Just Intonation, assuming a 3/2 perfect fifth. Wiki authors can feel free to extend this list beyond the 47-limit or leave it at that, but of course, it should be noted that a complete list would be infinite. The narrowest "third" is 27/25, which is decidedly not a third; and the widest "third" is 50/27, which ditto. Thus, the entire conceptual category of a third and then some is covered, and composers can decide for themselves what counts as a "third" and what doesn't.

chord
first interval
second interval
prime
odd
comments

ratio
cents
ratio
cents
limit
limit

50:54:75
27/25
133.238
25/18
568.717
5
75

12:13:18
13/12
138.573
18/13
563.382
13
13

46:50:69
25/23
144.353
69/50
557.602
23
69

22:24:33
12/11
150.637
11/8
551.318
11
33

42:46:63
23/21
157.493
63/46
544.462
23
63

10:11:15
11/10
165.004
15/11
536.951
11
15

38:42:57
21/19
173.268
19/14
528.687
19
57

18:20:27
10/9
182.404
27/20
519.551
5
27

34:38:51
19/17
192.558
51/38
509.397
19
51
Quasi-meantone Suspended 2nd
8:9:12
9/8
203.910
4/3
498.045
3
9
Suspended 2nd
30:34:45
17/15
216.687
45/34
485.268
17
45

22:25:33
25/22
221.309
33/25
480.646
11
33

36:41:54
41/36
225.152
54/41
476.803
41
41

14:16:21
8/7
231.174
21/16
470.781
7
21

20:23:30
23/20
241.961
30/23
459.994
23
23

26:30:39
15/13
247.741
13/10
454.214
13
15
Inverse "barbados" triad
32:37:48
37/32
251.344
48/37
450.611
37
37
Rooted inframinor triad
6:7:9
7/6
266.871
9/7
435.084
7
9
Septimal subminor
40:47:60
47/40
279.193
60/47
422.762
47
47

28:33:42
33/28
284.447
14/11
417.508
11
33

22:26:33
13/11
289.210
33/26
412.745
13
33
Neo-Gothic minor triad
16:19:24
19/16
297.513
24/19
404.442
19
19
Rooted minor triad
26:31:39
31/26
304.508
39/31
397.447
31
39

36:43:54
43/36
307.608
54/43
394.347
43
43

10:12:15
6/5
315.641
5/4
386.314
5
5
5-limit minor
24:29:36
29/24
327.622
36/29
374.333
29
29

14:17:21
17/14
336.130
21/17
365.825
17
21
17-limit supraminor
32:39:48
39/32
342.483
16/13
359.472
13
39
Rooted neutral triad
18:22:27
11/9
347.408
27/22
354.547
11
27
Neutral
22:27:33
27/22
354.547
11/9
347.408
11
33
Neutral
26:32:39
16/13
359.472
39/32
342.483
13
39

30:37:45
37/30
363.075
45/37
338.880
37
45

4:5:6
5/4
386.314
6/5
315.641
5
5
5-limit major
30:38:45
19/15
409.244
45/38
292.711
19
45

26:33:39
33/26
412.745
13/11
289.210
13
33

22:28:33
14/11
417.508
33/28
284.447
11
33
Neo-Gothic major triad
94:120:141
60/47
422.762
47/40
279.193
47
141

18:23:27
23/18
424.364
27/23
277.591
23
27

32:41:48
41/32
429.062
48/41
272.893
41
41
Rooted supermajor triad
14:18:21
9/7
435.084
7/6
266.871
7
9
Septimal supermajor
24:31:36
31/24
443.081
36/31
258.874
31
31

74:96:111
48/37
450.611
37/32
251.344
37
37
Rooted ultramajor triad
10:13:15
13/10
454.214
15/13
247.741
13
15
"Barbados" triad
36:47:54
47/36
461.597
54/47
240.358
47
47

26:34:39
17/13
464.428
39/34
237.527
17
39

16:21:24
21/16
470.781
8/7
231.174
7
21

22:29:33
29/22
478.259
33/29
223.696
29
29

28:37:42
37/28
482.518
42/37
219.437
37
37

34:45:51
45/34
485.268
17/15
216.687
17
51

6:8:9
4/3
498.045
9/8
203.910
3
9
Suspended 4th
38:51:57
51/38
509.397
19/17
192.558
19
57
Quasi-meantone Suspended 4th
20:27:30
27/20
519.551
10/9
182.404
5
27

14:19:21
19/14
529.687
21/19
173.268
19
21

22:30:33
15/11
536.951
11/10
165.004
11
33

46:63:69
63/46
544.462
23/21
157.493
23
69

8:11:12
11/8
551.318
12/11
150.637
11
11

50:69:75
69/50
557.602
25/23
144.353
23
75

26:36:39
18/13
563.382
13/12
138.573
13
39

18:25:27
25/18
568.717
27/25
133.238
5
27

....................
.............
..................
.............
..................
.............
............
..........................................