editing disabled

The familiar harmonic entropy minimum with this MOS pattern is godzilla, in which a generator is 8/7 or 7/6 (tempered to be the same interval, or even 37/32 if you like) so two of them make a 4/3. However, in addition to godzilla (tempering out 81/80) and the 2.3.7 temperament semaphore, there is also a weird scale called "pseudo-semaphore", in which two different flavors of 3/2 exist in the same scale: an octave minus two generators makes a sharp 3/2, and two octaves minus seven generators makes a flat 3/2.
Generator
Cents
Comments
1\5










240











12\59
244.068
Pseudo-semaphore is around here









11\54

244.444









10\49


244.898








9\44



245.455







8\39




246.154






7\34





247.059





6\29






248.276






11\53





249.057
Semaphore is around here



5\24







250
L/s = 4





9\43





251.163












252.178
L/s = pi


4\19








252.632
Godzilla is around here
L/s = 3











253.643
L/s = e




11\52






253.813







29\137




254.015









76\359


254.039











199\940
254.043










123\581

254.045








47\222



254.054






18\85





254.118




7\33







254.5455





10\47






255.319






13\61





255.734







16\75




256.000


3\14









257.143
Boundary of propriety (generators
larger than this are proper)




11\51






258.8235












258.957




8\37







259.459






21\97





259.794








55\254



259.843










144\665

259.850











233\1076
259.851
Golden superpelog








89\411


259.854







34\157




259.873





13\60






260












260.246



5\23








260.870
Optimum rank range (L/s=3/2) superpelog



7\32







262.5





9\41






263.415






11\50





264







13\59




264.407








15\68



264.706









17\77


264.935










19\86

265.116











21\95
265.263

2\9










266.667